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Abstract 

The multi-dimensional Darboux transformation and its spectral properties are shown to give 
rise to matrix generalizations of the Calogero and Sutherland families of Hamiltonians, acting as 
twisted Hodge Laplacians on k-forms. These matrix Hamiltonians are shown to be exactly sol vable 
when k = 1. In the case of the Sutherland Hamiltonian, the corresponding eigenforms are natural 
generalizations of the Jack polynomials satisfying remarkable orthogonality properties with respect 
to the Hodge inner product. © 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduct ion 

The central role played by the Calogero-Suther land Hamiltonians [ 1,5,7] in the theory 

of  classical and quantum completely integrable systems gives a strong motivation to the 

search for exactly solvable matrix Schr6dinger operators which could be viewed as true 

analogues of these Hamiltonians. 

In this paper, we pursue one of the possible approaches to this problem, based on the 

multi-dimensional Darboux transformation that we have recently introduced and studied 

for twisted Hodge Laplacians on oriented Riemannian manifolds [2]. We will see that 

the Darboux transformation gives rise to matrix Calogero-Suther land Hamiltonians which 
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are exactly solvable, with orthogonality relations between their eigenfunctions which are of 
independent significance, as in the scalar case [4]. It is clear that any purely formal approach 
is unlikely to produce matrix potentials meeting these requirements. 

Recall that the basic ingredient of the multi-dimensional Darboux transformation is a 
geometric generalization of the intertwining relations that underlie the classical Darboux 
transformation of Sturm-Liouville operators. The multi-dimensional Darboux transforma- 
tion therefore enables one to construct a family of twisted Hodge Laplacians whose spectra 
and eigenforms are related in a natural way through the action of twisted differentials 
and codifferentials. In local coordinates, these twisted Laplacians correspond to matrix 
Schr6dinger operators acting on k-forms. By applying the multi-dimensional Darboux trans- 
formation to the Calogero and Sutherland Hamiltonians, we will therefore obtain matrix 
Schr6dinger operators for a system of N particles interacting pairwise on a line or a cir- 
cle. In the case k = 1, which corresponds to an N - b y - N  matrix Schr6dinger operator, 
we will derive explicit expressions for the spectrum and the eigenforms of these matrix 
Schr6dinger operators. These eigenforms will be expressible as 1-form analogues of the 
Laguerre and Jack polynomials, which will be shown to satisfy remarkable orthogonality 
properties with respect to the Hodge inner product, generalizing the well-known scalar 
ones. 

Section 2 contains a brief summary of the essentials of the multi-dimensional Darboux 
transformation. In Section 3, we recall the explicit formulas for the bound states and eigen- 
values of the Calogero and Sutherland Hamiltonians in terms of Laguerre and Jack polyno- 
mials. In Sections 4 and 5, we construct the twisted Hodge Laplacians which arise from the 
application of the multi-dimensional Darboux transformation to the Calogero and Suther- 

land models. The corresponding spectral problems are shown to be exactly solvable for 
k = 1, and their eigenforms are computed explicitly together with their orthogonality 
relations. 

2. The multi-dimensional Darboux transformation 

Our goal in this section is to recall the essentials of the multi-dimensional generalization 
of the Darboux transformation to twisted Hodge Laplacians. We refer the reader to [2] for 
additional details. Let (M, g) be a compact n-dimensional oriented Riemannian manifold 
without boundary. The exterior algebra A(M) = ~ = 0  Ak (M) of smooth differential forms 
on M is endowed with the standard Hodge inner product: 

(091,0)2) = f o)1 A *0)2 
M 

for all o91, o92 E Ak(M). Our sign convention for the Hodge Laplacian Ak : Ak(M) ---~ 
A k (M) is given by 

--Ak = d6 + 8d, (1) 
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where, for ~o E A~(M), we have 

6co = ( - 1 )  nCk-1)+l • d(,co). 

We consider the twis ted Hodge Laplacians  Hk : /x k (M) -+ /~k (M) given by 

Hk = d - 3  + + 3+d - ,  (2) 

where 

d -  = e - X d e  x ,  3 + = e z a e  - x ,  (3) 

and X is a C a real-valued function on M. When X -= 0 we recover the usual Hodge 

Laplacians --Ak = d6 + 3d. The twisted differentials d -  and 3 + act as boundary and 

coboundary operators on the exterior algebra A (M) and the correponding differential com- 

plexes are locally exact. We also have 

(3+ ot, fl) = (~, d -  fl) (4) 

for all ~ c /~k+l (M),/3 ~ Ak(M), so that the twisted Hodge Laplacians Hk are self-adjoint 

and non-negative. When acting on a 0-form, the twisted Hodge Laplacian takes the form of 

a SchrOdinger operator: 

H0 = --ALB --{- V, (5) 

where ALB = A0 denotes the Laplace-Beltrami operator on (M, g), and V is a potential 

given by 

V = (VX)  2 - (ALB)X.  (6) 

The twisted Hodge Laplacians Hk, k >_ 1, act as matrix Schrrdinger operators when they 

are expressed in local coordinates. We have 

Hk = --Ak + Vk, (7) 

where 

k 

(VkO))il ..... ik = VO)il ..... ik + 2 E v J V i r ~ ' W i l  ..... i,-Ijir+l ..... ik" (8} 
r=l 

The twisted Hodge Laplacians Hk can be decomposed as follows: 

Hk = H ( ' )  + Hk (2~, 

where 

H~ I) = d - 3  +, Hk (2) .= 3+d - .  

It thus follows that we have the identities: 

H,~ ') H~ 2) = Hk (2} Hk (l) = 0, (9} 
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and the intertwining relations 

• ~ + L / ( I )  = H(2)8 + H (l) "- dH~-  (21. 
v " * k + l  k ' k+l a = 

From (9), we obtain the following result: 

L e m m a  1. If  co E A k (M) is an eigenform o f  Ilk with eigenvalue )~ # 0, then we have 

either: 

(i) H~i) co = )~co and H~J)co = O for  some i, j ~ {1, 2}, or, 

( i i )  n f f )  co is an eigenform o f  H~ i) with eigenvalue )~ for  i = 1,2. 

We are now ready to define the multi-dimensional Darboux transformation. 

Definition 1. Let co be an eigenform of a twisted Laplacian Hk with eigenvalue )~ # 0. 

If  H~J/co = kco, k > 1, we define its Darboux transform to be the (k - 1)-form 6+co. If 

H~2~co = kco, k < n - 1, we define its Darboux transform to be the (k + 1)-form d-co. 

The Darboux transformation therefore gives rise to up to three new eigenforms of  H = 
n H Gk= 0 k, starting from a given eigenform of Hk with non-zero eigenvalue. 

Theorem 1. Suppose that Hkco = )~co, )~ # O. In case (i) of  Lemma 1 with i = 1, the 

Darboux transform 8+co is an eigenform o f  Hk-  i with eigenvalue )~. In case (i) of  Lemma 1 

with i = 2, the Darboux transform d-co is an eigenform o f  Hk + l with eigenvalue ~.. In case 
(ii) of  Lemma 1, 3+H~l)co H (2) ",~ eigenforms o f  Hk_j and d -  k w are and Ilk+, with eigenvalue 

)~, respectively, and H~l) co, H~2) co are eigenforms of  ilk with eigenvalue )~. 

The operator H = wk=0'~n Hk can thus be thought of  as a supersymmetric Hamiltonian act- 

ing on the exterior algebra of  M [8]. We conclude by remarking that the multi-dimensional 

Darboux transformation maps any pair of orthogonal eigenfunctions corresponding to dis- 

tinct eigenvalues of a twisted Laplace-Beltrami operator H0 to orthogonal eigen-l-forms 

of  the corresponding twisted Hodge Laplacian Hi. 

Theorem 2. Let H = d -  3 + + 6+ d -  be a twisted Laplacian and let or, fl be O-forms such 

that Hot = )~ot, Hfl = #fl where )~ # tz and (or, fl) = O. Then, 

(d a, d - f l )  = O. 

Proof.  Let H be a twisted Laplacian acting on 0-forms. It follows from (4) that 

( d - a ,  d - r )  = (c~, 3+d- f l )  = (c~, Hfl) = #(ct, r )  = 0 

= (d-c~, d - f l )  -= (3+d-or, 13) = (Hot, fl) = )v(ot, fl). [] 

In Sections 4 and 5, we will apply Theorems 1 and 2 to obtain exactly solvable matrix 
generalizations of  the Calogero-Sutherland class of Hamiltonians. 
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3. The Calogero and Sutherland Hamiltonians 

The Calogero Hamiltonian is given by 

where g is a constant satisfying g > - 1/2 to ensure the existence of bound states. The 

Hamiltonian (10) is thus of  the form (5) where M is the open subset of  ~ N  given by 

xj < .  • • < XN, endowed with the flat Euclidean metric. In terms of the variables z and r 2 
given by 

N i - I  N i - I  

Z = H U ( X i - - X j ) ,  r 2 _  - 1 * 

i=2 i=1 i=2 j=l  

the eigenfunctions of  Hc  are given by 

7*,,t(x) = z"+U2~Onl(r)Pl(x), n, l = O, 1, 2 . . . . .  

where 

qg"'(r) = e x p  [ - ( 4 ) ( N ) I / 2 r 2 ]  Lb ( 2  ( N ) I / 2 r 2 )  ' 

1 
a = ~(1 + 2g) 1/2, (11) 

1 
b = I  + - ~ ( N -  3I + ~ N ( N -  I) a +  . 

The functions L~ are the Laguerre polynomials and the functions Pl(x) are symmetric 

harmonic polynomials of  degree l in the particle coordinates with respect to a certain 
generalized Laplacian [ 1 ]. The eigenvalues of  the Hamiltonian Hc  are given by 

Ezn+/ = w ( N - 1 ) + - ~ N ( N - 1 )  a +  + 2 n + /  . (12) 

The Sutherland Hamiltonian describes a system of N particles on a circle, interacting 
through a pairwise potential. It is given by 

X--"N 0 2 ~ 1 , (13) 
Hs = - Z.~ ~ + 2fl(/~ - 1) Z.., 

(L/re)2 sin2((re/L)(xi x9)) i=1 u a i  i<j 

where 0 < xl < . . .  < XN < L, fl(j8 -- 1) > - -1 /4  and L denotes the perimeter of the 
circle, so that (L/re) sin((re/L)(xi - x j))  is the chord length between the i and j particles. 
The spectrum of the Sutherland Hamiltonian is bounded from below, with ground state 

energy given by 

1 ( L ) 2 / ~ 2 N ( N 2  E0 = ~ - 1). (14) 
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The normalizable ground state is given by 

l/'r0 (x I ' XN)= H [ s i n (  n" . . . .  . 

l<_i<j<_N 

It is convenient to transform the original spectral problem into a related one by conjugating 

Hs by the normalizable ground state eigenfunction gr0 and introducing the variables 

Zj = e 2rcixj/L. 

The spectral problem H s ~  = E~ / i s  thus transformed into 

Hq~ = ~ ( E -  E0)4~, 

where 

H = ~  zj~zj + ' Z k Z ~ _ Z k /  - Z t  . (16) 
j=l  j<k 

The eigenfunctions of  H are certain polynomials Jz (z I . . . . .  ZN ; 1/13) of the zj's which are 

labelled by partitions )~ of their degree n of  length less than N. Recall that if )~ and/_t are 

two partitions of  n, then we have a natural ordering given by )~ >_ # if)~ l + ;-2 + ' "  • + )~i >_ 

/zl + ~2 -4- .. •/xi, for all i. The eigenfunctions J)~(zl . . . . .  ZN; 1/fl) of H will be of the 
form 

J)~(Zl . . . . .  Z N ;  1//3) = mz + Z v)'umu' 
#<~. 

where 

E l-Iz? 
permO.) j 

and they will be orthonormal with respect to the inner product given by 

(Jz, Ju) = f d01 dON H [(Zj -- zk)12~Jz(z)Ju(z). (17) 
2zr 2re d j<k 

These conditions determine uniquely the Jack polynomials [4]. The excited states are ex- 
pressed in terms of the Jack polynomials in the following way: 

N ~q-(N-1)fl/2 

~PX,q (Zl . . . . .  Z N ) =  H z i ]  H ( z i - z j ) ~ J ) , ( z ,  . . . . .  ZN;1//3), (18) 
i i=1 / i<j 

where q is an arbitrary real quantum number corresponding to the translational invariance 
of the Hamiltonian and ,k covers all partitions of  length less than N. The eigenvalues K~.,q 
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and Ez.q of the Sutherland Hamiltonian Hs and the momentum operator P acting on the 

eigenstates (18) are given by 

N 2zr 
x~.,q = --E(n + Nq)  = Z Ki, 

i : 1  

N 

E~..q ~ 
i=1  

(19) 

where 

27/" 
xi = ~-[Xi  + 3 ( N  + 1 - 2i) + q ] .  

L 

4. Matrix Calogero potentials and their eigenforms 

In this section, we construct an exactly solvable matrix generalization of the Calogero 

Hamiltonian, realized as a twisted Hodge Laplacian acting on 1-forms. The eigen 1-forms 
and the spectrum of this matrix Hamiltonian will be determined explicitly by applying 

Theorem 1. To define the twisted Hamiltonian H, we take e - z  as a constant multiple of the 

ground state, ~0, since this eigenfunction has no zeros away from the singularities in the 
potential. We thus let 

X(x) = C r 2 -  ( a  + ~ ) l o g ( z ) ,  (20) 

where 

We have 

~..,(xi - xj) - a + 
j=~ j=l (xi - x i) 
j~i j,~i 

and 

A Z = 2 C ( N - 1 ) +  a +  (xi xj)2" 

)¢i 

The Laplacian of X can be written in an equivalent form by using the identity 

N N N i - I  
1 2 E Z  1 

~ ~ (xi - x 9  2 - (xi - xsF' 
i=1  j=l  i = 2  j = l  
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which gives 

( l 
A x = 2 C ( N - 1 ) + 2  a +  (xi x j )  2" 

Using Eqs. (7) and (8), we obtain 

(Hck0))il...ik = - -A + (Xi -- Xj) -- a + (x i - x j )  
i•1 = j=l 

j # i  j # i  

( ~ ) N i - I  1 

l )  
+2~-'-~ Z - - -  - a "~- O)il ..... i r _ l j i r +  1 ... . .  ik 

r=l j=l (Xj -- Xir) 2 
j # i r  

+ 2  Z - ~ - ( N - 1 ) +  a +  (Xir Xq) 2 
r=l = 

q~ir 

O)il ..... ir .. . . .  ik" 

(21) 

For the twisted Laplacian Hc1 acting on 1-forms, we thus have 
o 

(HclO)m = --z~ + - -  y '~(x i  -- x j )  -- a + (xi -- x j )  
i=1 j=l j=J 

j # i  j # i  

- 2 C ( N  - 1) + 2 a + ' =  j~l'= (Xi - -  x j ) 2  O)m 

- 2  Z - - +  a +  j=l (Xm - Xj) 2 (.Oj 
j:fim 

+ 2  - - ~ - ( N - 1 ) +  a +  = ( X m _ X q ) 2  COm. (22) 

q#m  

The eigenforms of Hc1 can now be computed by applying d -  to the eigenfunctions of HE. 
Indeed, recall from Theorem 1 that if 0 is an eigenfunction of H0 with eigenvalue E # E0, 
then o) = d -  ~ is an eigenform of H1 with eigenvalue E - E0. We have 

( d - O ) j  = q]-O, 

where 

q~- = e - X V j e  X. 
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From (10), we obtain 

9 

= = ~ e Oj(Ln(2Cr )P/(x)).  q f  tp,, l e-XVjeXl/rnl  . a + l / 2  -Cr- b 2 

Therefore, the eigen I-forms of Hc1 are given as follow. 

N 
toni d - ~ n l  z a+l/2e-Cr2 ~ b "~ = = Oj{L,,(2Cr~)Pl(x)}dxj. (23) 

j = l  

The latter expression can be made more explicit by using the recursion formula for the 

Laguerre polynomials. We have 

o9,11 : (d-l/.rnl) -- 4Cza+l /2  e-Cr2 
N 

b ~ . - b + l ( 2 C r 2 ) p / ( x )  + L,,(2Cr-)OjPI(x) dxj. (24) x Z (xj - x o c , , _  1 
j = l  ~=1 

, # i 

Using Theorems 1 and 2, we can summarize the results of  this section as follows: 

Theorem 3. The I-forms Wnl defined by (24) are the eigenforms of the matrix Calogero 
Hamiltonian Hcl given by (22), with eigenvalues En/ given by (12). The eigenforms cO,,l 

and wn't' corresponding to distinct eigenvalues are orthogonal with respect to the Hodge 

inner product, 

f Oh, l *O)n'l' : A ~nn'~ll', 

that is. 

f .~2a+ 1 -2Cr 2 b 2 b I .2 y ~ . ,  e Ok[Ln(2Cr )PI(X)]Ok[L,,,(2Ct )PI,(X)] dxl " "  dxN : 3,,,,'~11'. 

k 

5. Matr ix  Sutherland models  and the Jack  e igenforms 

We now turn to the Sutherland model,  in which we let L = 2n.  Just as we did with the 

Calogero model,  we choose e - x  to be a constant multiple of the ground state, 

1 
X ( x ) = - f l  Z l°gsin2 (xi-xi)' (25) 

I<j<_N 

which can be rewritten as 

N-I N 
X(x)=- -~- -~  ~ logsin~(xj--xi). 

i=1 j=i+l 
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l=h =~ Z (fx- "x)(Z/i)zu!s Z (LE) 'u~c°(bx-- u'X)(E/I)zU!S ~ ~ + r°) 
I m [ N °+ -~ 

zoO- ) 
I N N ~- 

(9E) 

(,,- ,,~-,o03~ / t t ~ ) ~ + v- = u'oo'~//) 
E 

£q UOA!~ S! stu~oJ- I uo ~u!lo~ iS/_/ue!uolI.~H oq£ 
-q¢b 
l=b l=d 
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l-forms. Just as in the case of the Calogero Hamiltonian, the eigenforms and the spectrum 

of this matrix Hamiltonian will be determined explicitly by applying Theorem 1. These 
eigenforms will be expressed in terms of the Jack polynomials and will satisfy remarkable 
orthogonality properties relative to the Hodge inner product. We will refer to them as Jack 
1-forms. It is convenient to work in the coordinate chart =4 used in Section 3. In these 
coordinates, the ground state wavefunction is given by 

~(~) = F I  t=; - ~kl ~ 1-I V ~(~-''/2, 
j <k k 

up to complex multiplicative constants, and the Schr6dinger operator is transformed into 
(16). 

We therefore set 

X(x(z)) = - logA/~(z)  = f l Z l o g l z j  - z k l  + t (  _N- 1) Z l o g ( z k ) "  (28) 
z .  

i < k k 

We have 

q k ~ , q  =e-XVkeX~t~,q = I~I Zmj 
m = 1 

[( l l<J ??1:1 

so that 

d-l~Z'q = Zi) -(N-I)fi/2 1--I Izi -- :il ~ Y~ a-~ :m A 
i=1 i <.j k m = l  

This differential form is a Jack 1-form. 

Theorem 4. The 1-forms given by 

, =  

- ( N - 1 ) f l / 2  

1-I Iz, - ~.jl ~ E o=~ 
i <j k 

m = l  

are eigenforms of the matrix Sutherland Hamiltonian Hsl given by (27) with eigenvalues 
E~.q given by (19). They are orthogonal with respect to the Hodge inner product, 

f o)Z,q /~ *O)Z',q' = ~Z,,k'~q,q', 
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that is, 

f ~ k  (Zk)2 FI Zm)-(N-1)fll--Ilzi --Zjl2f~Oz k ~Zs J~ (z, ~zk 
m=l i<j s=l 

[ (  N \ q '  (Z; ~ ) 1  ( IN.I Zml ) 

The orthogonality relations given in Theorems 3 and 4 can be thought of as natural 
generalizations to the case of differential forms of the classical orthogonality relations for 
the Laguerre and Jack polynomials. We conclude by remarking that similar results can be 
obtained for all the families of integrable Hamiltonians related to the simple Lie algebras, 
in the sense of [5]. The corresponding eigenforms will be expressed in terms of symmetric 
Heckman-Opdam polynomials [3]. 
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